Bart van Stratum


image

I am a researcher, mostly working on turbulent processes in the atmospheric boundary layer, using (and developing) tools like large-eddy simulation and conceptual models.

After studying meteorology at the Wageningen University (Netherlands), I obtained my doctoral degree at the Max Planck Institute for Meteorology in Hamburg (Germany). I currently work as a researcher at Wageningen University & Research (WUR).

Aside from work, I enjoy cycling and bike touring holidays.


Model development

Both professionaly and as a hobby, I enjoy programming and developing meteorological models. Over the years, I have been involved in the development of several models, most notably the work on MicroHH and CLASS.

MicroHH

MicroHH is a computational fluid dynamics code, designed for DNS and LES studies of turbulent flows in the atmosphere. The model was created from scratch in C++, with the goal of being a fast and highly parallel code, capable of running on >10000 CPU cores. It can also run on Graphical Processing Units (GPUs) using NVIDIA's CUDA-C language. The current version supports a wide variety of setups, ranging from DNS of neutral channel flows, to fully realistic LES with radiation, microphysics, and land-atmosphere interactions. The reference paper of MicroHH 1.0 is available online.

To simulate real-life weather in MicroHH, we've developed an open-source Python package called (LS)²D. This package introduces a one-way coupling between the global ERA5 reanalysis and MicroHH. For further details, see van Stratum et al. (2023).

Our Vimeo channel channel has animations showcasing the research done with MicroHH.

CLASS

CLASS is a conceptual (mixed-layer) model intended to study the convective boundary layer, and its coupling to the soil, land-surface, chemistry, and clouds. It was developed as part of our book: Atmospheric Boundary Layer: Integrating Chemistry and Land Interactions.. We provide several versions, including an educational version with graphical user interface, and research versions written in Python and Fortran. More information is available on the CLASS website.

Projects

Publications

Peer reviewed

  • M. Tijhuis, B.J.H. van Stratum, and C.C. van Heerwaarden (2024): The impact of coupled 3D shortwave radiative transfer on surface radiation and cumulus clouds over land. Atmos. Chem. Phys., (10.5194/acp-24-10567-2024)
  • M.C. Krol, B.J.H. van Stratum, I. Anglou and K.F. Boersma (2024). Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns. Atmos. Chem. Phys. (10.5194/acp-24-8243-2024)
  • J. Hakkarainen, G. Kuhlmann, E. Koene, D. Santaren, S. Meier, M.C. Krol, B.J.H. van Stratum, I. Ialongo, F. Chevallier, J. Tamminen and D. Brunner (2024). Analyzing nitrogen dioxide to nitrogen oxide scaling factors for data-driven satellite-based emission estimation methods: A case study of Matimba/Medupi power stations in South Africa. Atmospheric Pollution Research. (10.1016/j.apr.2024.1021710)
  • B.J.H. van Stratum, C.C. van Heerwaarden, & J. Vilà-Guerau de Arellano (2023). The benefits and challenges of downscaling a global reanalysis with doubly-periodic large-eddy simulations. Journal of Advances in Modeling Earth Systems. (10.1029/2023MS003750)
  • W.B. Mol, B.J.H. van Stratum, W.H. Knap, & C.C. van Heerwaarden (2023). Reconciling observations of solar irradiance variability with cloud size distributions. Journal of Geophysical Research: Atmospheres. (10.1029/2022JD037894)
  • J. Vilà‐Guerau de Arellano, O. Hartogensis, I. Benedict, H. De Boer, ..., B.J.H. van Stratum, ... & C.C. van Heerwaarden (2023). Advancing understanding of land–atmosphere interactions by breaking discipline and scale barriers. Annals of the New York Academy of Sciences. (10.1111/nyas.14956)
  • M. Janssens, J. Vila-Guerau de Arellano, C.C. van Heerwaarden, B.J.H. van Stratum, S.R. De Roode, A.P. Siebesma, and F. Glassmeier (2022): The time scale of shallow convective self-aggregation in large-eddy simulations is sensitive to numerics. J. Adv. Model. Earth Syst., (10.1029/2022MS003292)
  • M. Tijhuis, B.J.H. van Stratum, M.A. Veerman, and C.C. van Heerwaarden (2022): An Efficient Parameterization for Surface Shortwave 3D Radiative Effects in Large-Eddy Simulations of Shallow Cumulus Clouds.. J. Adv. Model. Earth Syst., (10.1029/2022MS003262)
  • M.A. Veerman, B.J.H. van Stratum, and C.C. van Heerwaarden (2022): A case study of cumulus convection over land in cloud-resolving simulations with a coupled ray tracer.. Geophys. Res. Lett., (10.1029/2022GL100808)
  • B.J.H. van Stratum, N. Theeuwes, J. Barkmeijer, B. van Ulft, and I. Wijnant (2022): A one-year-long evaluation of a wind-farm parameterisation in HARMONIE-AROME. J. Adv. Model. Earth Syst., (10.1029/2021MS002947)
  • R.B. Schulte, M.C. van Zanten, B.J.H. van Stratum, and J. Vilà-Guerau de Arellano (2022): Assessing representativity of NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. Atmos. Chem. Phys., (10.5194/acp-22-8241-2022)
  • A. Raznjevic, C.C. van Heerwaarden, B.J.H. van Stratum, A. Hensen, I. Velzeboer, P. van den Bulk, and M.C. Krol (2022): Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations. Atmos. Chem. Phys. (10.5194/acp-22-6489-2022)
  • F. Couvreux, E. Bazile, Q. Rodier, B. Maronga, G. Matheou, M.J. Chinita, J. Edwards, B.J.H. van Stratum, C.C. van Heerwaarden, J. Huang, and A.F. Moene (2020): Intercomparison of Large-Eddy Simulations of the Antarctic Boundary Layer for Very Stable Stratification. Boundary-Layer Meteorol (10.1007/s10546-020-00539-4)
  • B.J.H. van Stratum, B. Stevens (2018): The impact of vertical mixing biases in large-eddy simulation on nocturnal low clouds. J. Adv. Model. Earth Syst. (10.1029/2017MS001239)
  • C.C. van Heerwaarden, B.J.H. van Stratum, T. Heus, J.A. Gibbs, E. Fedorovich, and J.P. Mellado (2017): MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows, Geosci. Model Dev. (10.5194/gmd-2017-41).
  • B.J.H. van Stratum, B. Stevens (2015): The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation. J. Adv. Model. Earth Syst., 07 (10.1002/2014MS000370)
  • B.J.H. van Stratum, J. Vila-Guerau de Arellano, C.C. van Heerwaarden, and H.G. Ouwersloot (2014): Sub-cloud layer feedbacks driven by the mass-flux of shallow cumulus convection over land. J. Atmos. Sci. 71, 881–895 (10.1175/JAS-D-13-0192.1)
  • H.G. Ouwersloot, J. Vila-Guerau de Arellano, B.J.H. van Stratum, M.C. Krol, and J. Lelieveld (2013): Quantifying the transport of sub-cloud layer reactants by shallow cumulus clouds over amazonia. J. Geophys. Res-Atmos. 118, 13,041–13,059 (10.1002/2013JD020431)
  • B.J.H. van Stratum, J. Vila-Guerau de Arellano et al. (2012): Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO. Atmos. Chem. Phys., 12 (12), 5329–5341 (10.5194/acp-12-5329-2012)

Books

  • J. Vila-Guerau de Arellano, C.C. van Heerwaarden, B.J.H. van Stratum, K. van den Dries (2015): Atmospheric Boundary Layer: Integrating Chemistry and Land Interactions. Cambridge Univ. Press, ISBN 9781107090941 (website)

Other

  • B.J.H. van Stratum, (2017). The influence of misrepresenting the nocturnal boundary layer on daytime convection in large-eddy simulation. PhD Thesis, Max Planck Institute for Meteorology/Universität Hamburg, Hamburg
  • B.J.H. van Stratum, S. Basu, I.L. Wijnant, J. Barkmeijer, J. Onvlee, and A.P. Siebesma, (2019). Wind turbine parametrisation in HARMONIE-AROME. KNMI technical report TR-377 (download)
  • B.J.H. van Stratum, A.P. Siebesma, J. Barkmeijer, and B. van Ulft, (2019). Downscaling HARMONIE-AROME with large-eddy simulation. KNMI technical report TR-378 (download)
  • I.L. Wijnant, B. van Ulft, B.J.H. van Stratum, J. Barkmeijer, J. Onvlee, C. de Valk, S. Knoop, S. Kok, G.J. Marseille, H. Klein Baltink, and A. Stepek, (2019). The Dutch Offshore Wind Atlas (DOWA): description of the dataset. KNMI technical report TR-380 (download)